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We prove for a concrete system the occurence of heteroclinic orbits via the Conley index. 
Because this system is bistable, we have two different connecting orbits. I f  we include the para- 
meter dependence of the reaction term, there exists two families of connecting orbits. At the 
ends of the parameter interval, where bistability occurs, we have bifurcation points. 

1. I n t r o d u c t i o n  

In this note we describe the occurrence of heteroclinic orbits in a bistable sys- 
tem. A heteroclinic orbit is a solution ~u of the system 

du 
~--f = f ( u ) ,  u ~ R  m , t E R ,  (1) 

which connects two different steady states: 

lim ~(t) = u (1) , 
t - ~  - - c o  

lim ~(t) = u (2) , 
t - + O O  

w h e r e f ( u  (1)) = f ( u  (2)) = 0, u (1) ~ u (2). Such heteroclinic orbits may  be the reason 
for the existence of waves in the corresponding reaction-diffusion system. Using 
topological methods,  especially the Conley index, for some types of  reaction sys- 
tems it was proved that there exist travelling waves if one has connecting orbits for 
the reaction system. This was done for gradient systems by Mischaikow [10] and 
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Reineck [11], and for Lotka-Volterra-Systems by Gardner [3]. The system we con- 
sider has this property, too. This will be outlined in another paper [5]. Our system 
describes a real chemical reaction, the so-called Belousov-Zhabotinskii reaction 
(BZR). For the investigation of spatial structures and travelling waves the pre- 
ferred reaction mixture contains malonic acid, bromate, and ferroin in diluted sul- 
furic acid. In this system a sharp color change from red (Fe(phen)~ +) to blue 
(Fe(phen)] +) occurs. Therefore, it is easy to detect the chemical structure visually. 
Kuhnert  et al. found waves in this system, and determined their velocities in depen- 
dence of some parameters, see [6,8]. 

We shall include a parameter, too. This parameter qo controls the autocatalytic 
oxidation of the catalyst Fe(phen)3 2+ when the BZ system is photosensitive [7]. If 
not, ~p corresponds to the inhibitor release by oxygen diffusing from the air into the 
liquid layer, see [9]. The parameter dependence yields the existence of a family of 
connecting orbits. Because we have two stable restpoints and one unstable rest- 
point if ~o E (~Omin, 99max), there are exactly two families. For ~o = ~Omin or ~o = qOmax, 
we have bifurcation points. We shall mainly use topological methods. For basic 
knowledge we refer the reader to the books of Conley [2] and Smoller [12]. 

We shall prove the existence of heteroclinic orbits for a concrete system. Never- 
theless this result may be applied for some other similar systems, which have both 
an unstable restpoint u 0) and a stable restpoint u (2), but no periodic orbit. 

2. Results  

Let us consider here the following model of the BZR [4,6,7]: 

OUl OzUl 
Ot ---- dl  ~ q- Ul (1 - Ul - u2) --[- qu2,  (2) 

OU2 0%2U2 
Ot -~ d2-O-~x2 - bulu2 - mu2 q- %0. (3) 

This model involves bistability for some parameter values q, b, m, qo. In what fol- 
lows we assume that b, m, ~o > 0, and 

0 < q < l .  (4) 

Let us briefly summarize the results of [4] concerning the reaction scheme 

dul 
dt = ul(1 - ux - u2) q- qu2,  (5) 

du2 
d~ - bu lu2  - mu2 + ~o. (6) 

Stationary solutions of (5) and (6) are completely described by 

b ~  + (m  - b ) ~  + (qo - m ) u l  - q~o = O, 
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qo 
U2 - -  b u  1._t_ m " 

Figure 1 shows the stability diagram. Zero eigenvalues occur at the turning points 
only. 

We are interested in positive solutions ul, u2 only, hence they represent concen- 
trations of the chemical substances. Let us denote the stable branches by u (1), u (3), 
and the unstable ones by u (2) . Let ul 3) > Ul 2) ~> Ul 1) . Define 

~D :-~- {(Ul, u 2 ) E R  2 : q < u l  < 1 , 0 < u z < q o m - l } .  

Then the following two theorems hold: 

THEOREM 1. [4] 
Assume (4) and uo E ©. Then the solution u(t) of(5) and (6) with u(0) = u0 exists 

for all t > 0 and is bounded (Vt/> 0), and u(t) e © Vt >10. 

Moreover, by means of the Dulac criterion it was shown that there do not exist 
any periodic solutions u(t). 

THEOREM 2. [4] 
Closed trajectories do not exist in ©. 

Our main result will be the following. 
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Fig. 1. Bistability diagram for ul in dependence on ~o for fixed values m = 0.008, b = 8.0, q = 0.001. 
The upper branch (full line) corresponds to ul l), the middle branch (broken line) to ul 2), and the lower 

branch (full line) to ul 3). 
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THEOREM 3 

For  each 99 E (99min, 99max) there exist exactly two heteroclinic orbits g(1) and ~,(2) 
of(5) and (6) included in 23. Moreover,  we have 

N(1)(t)--~U(1), t--,- + c ~ ,  

~(2)(t)--+u (3), t -+  + o o ,  

~u (O(t)-+u (2), t ~ - o o ,  i = 1 , 2 ,  

Now, we shall consider the parameter  values 99 = 99rnin and 99 = 99max. At these 
points exist heteroclinic orbits, too. 

THEOREM 4 

For 99 = 99min or 99 = 99max there exists a heteroclinic orbit ~,0) or ~u (2), respec- 
tively, of(5) and (6) included in 23. Moreover,  we have 

N(1)(t) '-+U(1), t - +  + o o ,  9 9 =  99rain, 

~(2)(t) --~U (3), t -+  + OO, 99 = 99max, 

~l(i)(t)-'*U (2), t --+ -- oo, i = 1,2, 9 9 = 99min, 99max. 

Before we state our last theorem about bifurcation let us define a bifurcation 
point  of heteroclinic orbits. L e t f  : R n x R--* R n be a continuous map. Consider a 
parametr ized family of differential equations 

/t = f ( u ,  99) (7) 

and choose a point (uo, 990) e R  ~ x R such thatf(u0,990) = 0. This point (uo, 990) is 
said to be a bifurcation point of heteroclinic orbits of (7) if for any open neighbor- 
hood ~l of  (u0,990) e R n x R there exists a heteroclinic orbit of(7) included in ~. 

THEOREM 5 

The points (u0), (99min), 99rain) and (u (3) (99max), 99max) are bifurcation points of  (5) 
and (6). 

Compare  fig. 2. 

3. P roofs  

First, we given the proof  of  theorem 3. 

Proof of theorem 3 
Fix 99 e (99rain, 99max). Theorems 1 and 2 imply that 23 is an isolating block of  
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Fig. 2. The flow in the phase space for cp E (qOmin, ~Omax), ~o = qOmin, ~0 < ~Omin, respectively. 

some invariant set K c int © in the sense of Conley. The Conley index of K is given 
bylc(K)  = [SO,*]. 

Since there are no homoclinic or periodic orbits in ©, each stationary solution 
of (5), (6) is an isolated invariant set. Moreover, each stationary stable solution of 
(5), (6) is the limit set of the flow of the system (5), (6) considered in some of its 
neighborhoods, and thus it is there an attractor. Consequently, Ic(u0)) = Ic(u(3)) 
= [S °, .]. On the other hand, there is no trajectory leaving ~D. Thus, the Browder 
topological degree of F on D is equal to 1. Topological degrees of F computed on 
sufficiently small neighborhoods of stable stationary solutions are also equal to 1. 
Thus, for a sufficiently small neighborhood of the unstable stationary solution this 
degree must be equal to -1.  Since the linearization of the vector field F at u (2) is 
an isomorphism, it has to have two real eigenvalues of opposite signs. By the Con- 
ley theory, IC(U (2)) = [S 1, *]. 

Now, let us consider two rectangles G'= [0, ul 3)] x [0, qo/m] c R 2 and 
G" = [ul 1), 1] x [0, ~o/m] c R 2. It is easy to check that both rectangles are isolating 
blocks of some invariant sets K', K" including {u (1), u (2)} and {u (2), u(3)}, respec- 
tively. Computing the Conley indices of K' and K" we obtain Ic(K ~) = I t(K") 
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= [., ,]. F rom the "sum property"  of the Conley index we get the following 
equations: 

IC({U (1)} U {U(2)}) = Ic({U(1)}) "Jr" IC({U(2)}) = [S 0, *] --~ [S 1 , "1 = [S 0 V S 1 , *], 

and similarly 

IC({U (2)} U {U(3)}) = [SO V S 1, *]. 

Since Ic(K' )  = [*, *] ¢ [SO V S 1 , .] = Ic({U0)} U {u(2)}) we obtain by the "sum the- 
orem" the existence of a nonstat ionary bounded solution of (5), (6), denoted by 
!//(1) and lying in the interior of G'. 

Analogously for G" we conclude that there exists at least on nonstat ionary 
bounded solution of(5), (6), say ~,(2), included in the interior of G". 

Obviously, the limit set of ~(I) (resp. ~,(2)) consists of exactly two points 
{U(1)}, {U (2)} (resp. {U(2)}, {U(3)}), and lim g/(1)(t) = u(1), lim ~(2)(t) = U (3) as t--+ cxz. 
Now,  let us consider the linearization o f F  at u (2), which has exactly two trajectories 
running away from u (2), when t goes to infinity. Since the flows of  the vector field 
F and its linearization at u (2) are locally homeomorphic  we obtain the uniqueness of  
~(1) and ~(2). [] 

Now,  we shall give the proofs of the theorems 4 and 5. 

Proof of theorem 4 
I f  ~o = ~omin there are exactly two stationary solutions u (1) = u (2) and u (3), of  (5), 

(6) in 2). Since there are no closed trajectories in © each stationary solution is an 
isolated set. 

It is well known (see [2]) that every stationary solution in the plane, which 
attracts locally all other solutions, has the Conley index equal to [S °, .]. The conti- 
nuat ion of  the stationary solution u (1) for ~o < ~Omi n does not  exist, and therefore 
Ic(u0)) = [., .]. Consequently, u (x) does not  attract locally all other solutions, 
which implies the existence of at least one trajectory running away from u (1) - u (2) 
and tending to u (3). 

The proof  for qo = ~Omax is the same. [] 

Proof of theorem 5 
Let us consider the point (U(1)(~min, qOmin). By the same arguments  as above, 

{u 0)} is an isolated invariant set in the sense of  Conley. In fact, every sufficiently 
small disc centered at u (1) is an isolating neighborhood for u0). The fundamental  
result in the Conley theory states that for every isolating neighborhood t£ of  an 
invariant  set $ there exists an isolating block ~ such that $ _ I/3 _ II, compare  [1]. 
Let (23k) be a descending sequence of  discs in R E centered at u (1) such that  
(') (Dk = {u (1) }. Now,  for each k ~ N there exists an isolating block ~k -- Dk for u (1). 

By the cont inuat ion property of the Conley index we have Ic (u(1)) = [., .]. 
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In o rde r  to p rove  the assert ion,  it is enough  to show tha t  for  every  open  ne ighbor -  
h o o d  1~ o f  (u (1), qOmin) e R 3 there exists a heterocl inic  orb i t  o f  (5), (6) in 7). 

F ix  an open  n e i g h b o r h o o d  11 o f  (u (1), ~0min)eR 3. Then  Nk c II if k e N  is suffi- 
c ient ly large. Since ~k  is compac t ,  we ob ta in  ~k  x (~min - E, ~min q- £) c '[~ if  e > 0  
is smal l  enough .  Le t  ~ e  (~min, ~min -}- 6). Then  Nk x {~} is an  isolat ing b lock  for  
some  invar ian t  set conta in ing  u (1) and  u (2). Since 

Ic( k × = [ * , ' 1 ,  

Zc(u°'  × = [s°,,], 

Ic(u(2' × = [sl, ,], 

we ob ta in  f r o m  the " s u m  t h e o r e m "  the existence 
× c tL. 

of  a heterocl in ic  o rb i t  in 
[] 
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